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Abstract. In a standard mammography study, two views are acquired
per breast, the Cranio-Caudal (CC) and Mediolateral-Oblique (MLO).
Due to the projective nature of 2D mammography, tissue superposition
may both mask or mimic the presence of lesions. Therefore, integrat-
ing information from both views is paramount to increase diagnostic
confidence for both radiologists and computer-aided detection systems.
This emphasizes the importance of automatically matching regions from
the two views. We here propose a deep convolutional neural network
for the registration of mammography images. The network is trained
to predict the affine transformation that minimizes the mean squared
error between the MLO and the registered CC view. However, due to
the complex nature of the breast glandular pattern, deformations due
to compression and the paucity of natural anatomic landmarks, opti-
mizing the mean squared error alone yields suboptimal results. Hence,
we propose a weakly supervised approach in which existing annotated
lesions are used as landmarks to further optimize the registration. To this
aim, the recently proposed Generalized Intersection over Union (GIoU) is
exploited as loss. Experiments on the public CBIS-DDSM dataset show
that the network was able to correctly realign the images in most cases;
corresponding bounding boxes were spatially matched in 68% of the
cases. Further improvements can be expected by incorporating an elastic
deformation field in the registration network. Results are promising and
support the feasibility of our approach.

Keywords: Mammography · Image registration · Spatial
transformer · Convolutional neural networks

1 Introduction

Population screening by means of digital mammography was shown to reduce
mortality associated to breast cancer. However, the 2D projective nature of mam-
mography results in tissue superposition that may both mask and simulate the
presence of lesions [13,20]. This is especially true when breast tissue is very dense,
[18], as the fibrous and glandular components have higher attenuation than fatty
tissue, and more similar to that of potential lesions, especially masses.
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In a standard screening examination, two projection views are acquired for
each breast, named craniocaudal (CC) and mediolateral oblique (MLO) [3]. The
breast is positioned between two compression plates; in the MLO view, the
compression plates are rotated by 45◦–50◦, towards the axilla. The radiologist
is thus able to locate suspicious areas on both views by triangulating from these
projections. This increases the diagnostic confidence as false positives due to
tissue superposition are likely to disappear in the contralateral view. Computer
Aided Detection (CAD) algorithms have also shown reduced false positive rates
when the two views are taken into account [3,14,19].

The objective of our research is to design and evaluate a registration network
for CC-MLO registration based on emerging deep learning technologies. Appli-
cations range from enhancing image presentation to the radiologist, to improv-
ing the performance of lesion detection algorithms that operate on single-view
images [12,14,19]. Unfortunately, registration of the breast is considerably more
challenging than other imaging modalities as the soft tissues in the breast are
compressed and distorted during the acquisition [4]. To the best of our knowl-
edge, few authors have explored the registration of CC and MLO views, and no
established deep learning approach exists for this task [4,5].

Given the difficulty of estimating the deformation field between the CC and
MLO views, many works in literature have resorted to matching Regions of
Interest instead. The goal is not necessarily to establish the exact correspondence
between lesions, but to minimize the chance that true positives are matched with
false positive detections. This technique has largely been explored in combination
with CAD algorithms that detect candidate lesions, which are then matched
based on a combination of position and visual similarity. Visual similarity can
be estimated based on hand-crafted features such as texture, size, intensity, etc.
[19] or, with the advent of deep learning, by training a Siamese Convolutional
Neural Network (CNN) [14]. Compared to this standard candidate-matching
approach, our proposed registration technique works directly on the input image,
and can be applied before, after or independently of other lesion detection or
classification networks. At the same time, it is a flexible and versatile module
that can be incorporated and jointly trained in more complex pipelines.

Successfully training a registration CNN requires defining a robust loss while
reducing the cost of annotation [5]. To this aim, we augment the standard Mean
Squared Error (MSE) loss exploiting available lesion annotations in the form
of bounding boxes. The Generalized Intersection over Union (GIoU) forces the
registration to match true lesions across both views. Preliminary experiments
on the CBIS-DDSM dataset (presented in Sect. 5) with an affine transformation
support the feasibility of our approach.

2 Background and Related Work

2.1 Deep Learning for Medical Image Registration

Registration requires estimating the spatial coordinate transformation that max-
imizes some measure of similarity between two images, usually denoted as the
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fixed and moving images [4,12]. Conventional registration methods are based
on numerical optimization techniques, and may differ based on the domain of
the transformation (global, local), its nature (rigid, affine, or elastic) and the
optimization procedure [4,22].

Recently, CNN-based techniques have been proposed to regress the registra-
tion transformation from pairs of unregistered images [5]. Available solutions
include fully convolutional networks or encoder-decoder architectures for elastic
transformations [2,8,11,15] and Spatial Transformer Networks for affine trans-
formations [23]. For a comprehensive review on the topic, the reader is referred
to a recent survey by Haskins and colleagues [5].

Compared to traditional optimization approaches, CNN-based approaches
are poised to have a substantial advantage: even if the training process is slower
and requires hundreds or thousands of image pairs, at inference time it is usually
much faster than optimizing the transformation on each image pair.

One of the main obstacles to efficient CNN-based registration is defining a
suitable loss. In principle, the registration can be trained from image pairs, with-
out additional annotations, by defining a similarity metric, such as the MSE, and
a regularization term (registration is a generally ill-posed inverse problem). This
approach forms the basis of unsupervised approaches, such as Voxelmorph [2],
which has been applied to the registration of several imaging modalities, such
as brain, breast and cardiac magnetic resonance imaging [1]. However, defining
a robust image similarity measurement is notoriously challenging, especially in
the presence of different source modalities, anatomical deformations or temporal
changes [5,8]. Unlike common registration tasks in brain, cardiac or abdominal
images, mammography images are characterized by stronger changes in view-
point and high tissue deformation induced by organ compression; this fact makes
the task more complex and, to the best of our knowledge, the feasibility of reg-
istering mammographic images has yet to be established.

An alternative strategy is supervised training, which however requires mark-
ing an appropriate number of manually matched points. Such ground truth is
usually difficult and expensive to obtain in the medical domain. In our case,
the breast is highly compressible and lacks rigid structures, and hence very few
anatomical landmarks can be accurately matched. Large calcifications have been
used as landmarks for validating registration algorithms as their location and
correspondence can be determined very precisely [21]. However, collecting a large
number of such annotations would be time consuming, and such benign struc-
tures are usually disregarded in radiological reports.

Our methodology falls into the semi-supervised domain, exploiting existing
partial annotations. A similar strategy was successfully applied to train prostate
MR registration from organ segmentation maps [8]. Our setting is more chal-
lenging as we assume that only coarse bounding boxes are available for training.

Finally, our work shares some similarities with multi-task learning settings in
which the registration task is jointly learned with another task. For instance, Qin
et al. combined estimation of cardiac motion and segmentation for cardiac MRI
in a single network with shared weights [15]. Our approach is complementary
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since the bounding boxes, which are in any case an approximate ground truth,
are used to supervise directly the registration task.
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Fig. 1. Overall architecture of the registration network. From left to right: the CC
and MLO views are passed through the shared convolutional layers; the feature map
is concatenated and passed as input to the localization network; the CC image is
registered by applying the estimated affine transformation parameters.

2.2 Spatial Transformer Networks

A Spatial Transformer network is a lightweight block which predicts and applies
a spatial transformation to an input feature map during a single forward pass.
It was proposed as a way to enhance an image classification network by allowing
the network to transform feature maps to a canonical, expected pose to simplify
inference in the subsequent layers [9]. The spatial transformer is composed of a
localization network, which predicts the parameters of an affine transformation,
which only requires six output parameters. Then, a sampling grid is created,
that is a set of points where the input map should be sampled to produce the
transformed output. Finally, the input feature map is resampled and interpo-
lated to produce the output image (see Fig. 1). Spatial Transformers include a
differentiable implementation of the sampling grid and resampling layer, allow-
ing for end-to-end training, with standard back-propagation, of the models they
are injected in. The network learns how to actively transform the feature maps
to help minimise the overall cost function of the network during training.

3 Methodology

The proposed registration network is an end-to-end architecture which accepts
as input a pair of unregistered CC and MLO images, and outputs the resampled
CC image. We chose the MLO as fixed image and the CC as moving image since
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the former includes also the pectoral muscle, which is outside of the CC field of
view. Registering the MLO to the CC would push the pectoral muscle out of the
image pixels grid, and it would be impossible to estimate the correct deformation
for the pixel belonging to the pectoral muscle.

The overall architecture, depicted in Fig. 1, is divided in two parts: the fea-
ture extraction block, and the Spatial Transformer block. The feature maps are
extracted for each view separately, before being concatenated and passed to the
Spatial Transformer network (introduced in Sect. 2.2). The proposed architec-
ture implements an affine transformation, but can be easily extended to support
other types of deformations by substituting the localization network. The archi-
tecture is trained in an end-to-end fashion exploiting the ground truth lesion
bounding boxes as additional supervision. This provides cues for higher quality
registration compared to the plain MSE.

The feature extraction backbone, marked as CNN in Fig. 1, is based on a
ResNet50 network [6]. Specifically, we include up to the Conv4 x blocks. Weights
are shared between views to reduce the number of parameters.

The Spatial Transformer is formed by a localization network and a resam-
pling module. The localization network is made of a residual block (correspond-
ing to the Conv5 x block of the ResNet50) followed by a dense layer to predict
the parameters of the affine transformation:

θ =

⎡
⎣

a1,1 a1,2 t1
a2,1 a2,2 t2
0 0 1

⎤
⎦ (1)

In the case of image registration, the sampling grid is simply the pixel grid
of the fixed image, which greatly simplifies the implementation of the grid gen-
erator [9]. The output warped CC image is obtained by applying the affine
transformation to this sampling grid using a bi-linear interpolation scheme.

The above resampling scheme can be applied indifferently to the original
images (as done here), as well as to the feature maps (which could be useful if
the feature maps were used for other tasks). Bounding boxes are converted by
applying the inverse affine transformation and then rectifying the results. All
layers including the bounding box registration are differentiable and, hence, can
be trained end-to-end.

3.1 Loss

We argue that the MSE cannot by itself achieve successful registration. One of
the underlying reasons is that the pectoral muscle is visible only in the MLO
view. Experimentally, we observe that the CC may be overstretched over the
pectoral muscle to achieve lower loss. If the registration is correct, the border of
the CC should align to that of the pectoral muscle (see Fig. 2(a)).

To counterbalance this fact, we include in the loss only the region in which
the moving CC image and the fixed MLO overlap (see Fig. 2(c)). The effect of
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the pectoral muscle, as well as of external air, is thus minimized. The resulting
loss is defined as:

LMSE(Xmlo,Xcc) =
∥∥(Xmlo − Xccreg )M

∥∥2
(2)

where Xmlo is the MLO image, Xccreg is the CC view after registration and M
is the binary overlap mask.

Fig. 2. Calculation of the overlap mask for the MSE loss. Unregistered (red box) and
registered (green box) CC views are shown in (a) and (b). The shaded blue area is
included in the calculation of the loss (b). In (c) the registered CC, fixed MLO and
overlap mask are shown superimposed. It can be noticed how the margin of the CC
view aligns with the pectoral muscle, outside of the overlap area. (Color figure online)

In order to exploit the lesion bounding boxes, we need a loss which reflects to
which extent corresponding views are matched by the registration. The Intersec-
tion over Union (IoU) is a widely used measure to compare bounding boxes, but
when the two bounding boxes do not overlap, the IoU is undefined. The recently
proposed GIoU overcomes this limitation [16]. Given a pair of bounding boxes,
it is defined as:

GIoU(Bmlo
i , B

ccreg
i ) = IoU(Bmlo

i , B
ccreg
i ) − Ac − U

Ac
(3)

where Bmlo
i and B

ccreg
i are the two bounding boxes, Ac is the area of the

smallest enclosing box that includes both and U is their union. In short, when
the bounding boxes don’t overlap significantly, the GIoU takes their relative
distance into account.

The GIoU loss (LGIoU = 1 − GIoU) was initially proposed as a regression
loss to train object detection networks. To the best of our knowledge, this is the
first time it is used for the purpose of registration. To conclude, for each pair of
mammographic views the total loss is calculated as

Ltotal = LMSE + λLGIoU (4)

where λ is a rescaling parameter.
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4 Experimental Setup

Dataset. Our experiments were performed on the curated CBIS-DDSM col-
lection [7,10]. Each study comprises up to 4 images including both CC and
MLO orientation. We selected cases with benign and malignant lesions visible
on both views. Based on the standard training/test split, we obtained 985 cases
for the development set and 122 for the test set. The training set was further
split into a training (75%) and validation (25%) set. Images were downsampled
so that the largest dimension was equal to 600 pixels. We did not exploit meta-
data available in the DICOM images; although in digital mammography patient
positioning and other useful information would be available in the image head-
ers, the DDSM collection comprises only scannerized screen-film mammography.
Images were converted to grayscale by replicating the intensity values across
the RGB channels and normalized by subtracting the ImageNet mean. No other
pixel normalization was applied.

Pretraining. The ResNet50 backbone is pretrained on the ImageNet dataset
and finetuned for the task of object detection on the same CBIS-DDSM dataset.
Specifically, it is pretrained using the Faster R-CNN for 80 epochs before trans-
ferring to the registration [17]. This allows faster convergence than transferring
directly from ImageNet (results not reported due to space limitations). This
observation opens interesting prospects for feature sharing across multiple tasks,
which however are outside of the scope of these experiments.

Hyperparameter Setup. Hyperparameters were experimentally finetuned on
a smaller dataset. For the final training, we used the Adam optimizer (learning
rate 10−4, batch size 1). The network was trained for 300 epochs, each comprising
500 batches. The λ parameter (see Eq. 4) is set to 1000. The output dense layer of
the Spatial Transformer is randomly initialized using Glorot initialization. The
affine transformation parameters bias parameters are initialized to a 45 degree
counterclockwise rotation, which is based on prior knowledge of the acquisition
process. The network was implemented in Keras 2.2 with Tensorflow 1.13.1. All
experiments were conducted on an AWS px2.large GPU instance.

Evaluation. Evaluation is not straightforward given the absence of a ground
truth. Since the GIoU takes into account both the intersection and the distance
of each pair of bounding boxes, we consider it as a viable evaluation metric. In
addition, we visually inspected the registration results for the test set.

5 Results

The network was trained for 300 epochs without showing signs of overfitting
(see Fig. 3). Both MSE and GIoU decreased indicating a synergistic behaviour
of the two losses. When two bounding boxes do not overlap (IoU = 0), the
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GIoU loss simplifies to LGIoU = 2 − U
Ac

≥ 1 [16]. In order to minimize U
Ac

, the
distance between the two bounding boxes must be reduced to the point where
they eventually overlap.

(a) (b)

Fig. 3. Evolution of the loss during training: MSE (a) and GIoU (b)

The distribution of the LGIoU on the test set is shown in Fig. 4. The bounding
boxes for the registered CC and MLO overlap in 66.7% of the cases, which is
an encouraging result. When LGIoU approaches 0, the bounding boxes tend to
perfectly overlap. In practice, due to the rectification process, the bounding boxes
are unlikely to achieve perfect overlap, and lower IoU values are to be expected.
Visually, in the large majority of cases the registration was successful in aligning
the two views in terms of shape and global features, although an evaluation by
a trained radiologist would be needed for confirmation.

Fig. 4. Histogram of the GIoU loss for the test set

Examples of successful and unsuccessful registration results are shown in
Fig. 5. In roughly 10% of the cases, the CC is still slightly overstretched to cover
the pectoral muscle (Fig. 5a). It can be shown that in two cases, even if global
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alignment is successful, the bounding boxes do not overlap, sometimes by a large
amount (Fig. 5c): this indicates that certain deformations cannot be recovered
with the proposed affine transformation.

(a)
overlap.png

(b)
overlap.png

(c)

(d) (e)

Fig. 5. Registration examples: the MLO and registered CC views are shown overlapped.
The MLO bounding box is shown in red, the CC in blue, before and after rectification.
(Color figure online)

6 Conclusion and Future Works

The presented work tackles the challenge of registering CC and MLO views by
designing a fully trainable registration network. Weakly supervision that exploits
available lesion annotations achieves promising results both in terms of visual
alignment and lesion registration. The proposed technique has been demon-
strated using an affine transformation. As a consequence, the network cannot
fully capture the complex deformations occurring due to breast compression.
Further improvements can be expected by substituting the Spatial Transformer
with a different module to estimate a pixel-wise deformation field. This work
lays the basis for several future developments. We will investigate how to com-
bine the proposed network with other architectures, e.g., for object detection,
to achieve multi-view analysis of mammographic images. The proposed tech-
nique could also be adapted to related tasks, such as the temporal registration
of images from subsequent screening rounds.
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